Knowledge Representation Issues in Semantic Graphs for Relationship Detection
نویسندگان
چکیده
An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a semantic graph, also known as a relational data graph or an attributed relational graph. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., “age” may be an attribute of a node of type “person”). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.
منابع مشابه
Relationships with other Formalisms
In this chapter, we are concerned with the relationship between Description Logics and other formalisms, regardless of whether they were designed for knowledge representation issues or not. We concentrated on those representation formalisms that either (1) had or have a strong influence on Description Logics (e.g., modal logics), (2) are closely related to Description Logics for historical reas...
متن کاملText Based Similarity Metrics and Deltas for Semantic Web Graphs
Recognizing that two Semantic Web documents or graphs are similar and characterizing their differences is useful in many tasks, including retrieval, updating, version control and knowledge base editing. We describe several text-based similarity metrics that characterize the relation between Semantic Web graphs and evaluate these metrics for three specific cases of similarity: similarity in clas...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملNeuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملVisual Exploratory Search of Relationship Graphs on Smartphones
This paper presents a novel framework for Visual Exploratory Search of Relationship Graphs on Smartphones (VESRGS) that is composed of three major components: inference and representation of semantic relationship graphs on the Web via meta-search, visual exploratory search of relationship graphs through both querying and browsing strategies, and human-computer interactions via the multi-touch i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005